ON MULTIPLICATIVE K BANHATTI INDICES OF LINE GRAPHS

B. Manjunath

Department of Mathematics, Governement First Grade College, Mulbagal, Kolar-563 101

Paper Received On: 21 JULY 2021
Peer Reviewed On: 31 JULY 2021
Published On: 1 SEPT 2021

Abstract

Let $G=(V, E)$ be a connected graph. The multiplicative K Banhatti indices of G are defined as $B \Pi_{*}(G)$ $={ }_{u e}\left[d_{G}(u) * d_{G}(e)\right]$, where $*$ is usual addition or multiplication and ue means that the vertex u and edge e are incident in G. In this paper, we compute the multiplicative K Banhatti indices of line graphs.. Mathematics Subject Classification: 05C05, 05C07, 05C35.
Keywords: Multiplicative K Banhatti indices; Line graph.

Scholarly Research Journal's is licensed Based on a work at www.srjis.com

1 Introduction

By a graph, we mean a finite, undirected without loops and multiple edges. Let G be a connected graph with vertex set $V(G)$ and edge set $E(G)$. The degree $d_{G}(v)$ of a vertex v is the number of vertices adjacent to v. The edge connecting the vertices u and v will be denoted by $u v$. Let $d_{G}(e)$ denotes the degree of an edge e in G, which is defined by $d_{G}(e)$ $=d_{G}(u)+d_{G}(v)-2$ with $e=u v$. For definitions and notions, the reader may refer to [7].

A molecular graph is a graph such that its vertices correspond to the atoms and the edges to the bonds. In Chemical Science, the physico- chemical properties of chemical compounds are often modeled by means of molecular graph based structure descriptors, which are also referred to as topological indices, see [3].

The K Banhatti indices of G are defined as $B *(G)={ }^{\mathrm{P}}{ }_{u e}\left[d_{G}(u) * d_{G}(e)\right]$, where $*$ is usual addition or multiplication and $u e$ means that the vertex u and edge e are incident in G. If $*$ is addition, then first K Banhatti index $B_{+}(G)=B_{1}(G)={ }^{{ }^{u}} \boldsymbol{u e}\left[d_{G}(u)+d_{G}(e)\right]$, and if $*$ is multiplication, then the second K Banhatti index $B_{\times}(G)=B_{2}(G)={ }^{\mathrm{P}}{ }_{u e}\left[d_{G}(u) \times d_{G}(e)\right]$. The K Banhatti indices were introduced by Kulli in [8].

Todeschini et al. [12] proposed that multiplicative variants of molecular structure descriptors be considered. When this idea is applied to Zagreb indices, for example, in [2]. The multiplicative version of first and second K Banhatti indices were introduced by Kulli in [10] and [11] as follows.

The multiplicative K Banhatti indices of G are defined as $B \Pi_{*}(G)={ }^{\mathrm{Q}} u e\left[d_{G}(u) *\right.$ $d_{G}(e)$], where $*$ is usual addition or multiplication and $u e$ means that the vertex u and edge e are incident in G. If $*$ is addition, then first multiplicative K Banhatti index $B \Pi_{+}(G)=$ $B \Pi_{1}(G)={ }_{u e}\left[d_{G}(u)+d_{G}(e)\right]$, and if $*$ is multiplication, then the second multiplicative K Banhatti index $B \Pi_{\times}(G)=B \Pi_{2}(G)=\mathrm{Q}_{u e}\left[d_{G}(u) d_{G}(e)\right]$. Recently many other indices were studied, for example, in [4] and [9].

The Line graph $L(G)$ is the graph with vertex set $V(L)=E(G)$ and whose vertices correspond to the edges of G with two vertices being adjacent if and only if the corresponding edges in G have a vertex in common two. For more
details, we refer to [5].

2 Results

Theorem 2.1 Let G be a r - regular graph with $n \geq 2$ vertices. Then
(i) $B \Pi_{1}(L(G))=[2(3 r-4)]^{n r(r-1)}$,
(ii) $B \Pi_{1}(L(G))=[4(r-1)(2 r-3)]^{n r(r-1)}$.

Proof.

Let G be a r - regular graph with $n \geq 2$ vertices. By algebraic method, we have
$|V(L(G))|=\frac{n r}{2}$ and $\quad|E(L(G))|=\frac{n r}{2}(r-1)$. Since line graph of a r-regular graph is $(2 r-2)$ - regular and $B \Pi_{*}(L(G))=\mathrm{Q}_{u e}\left[d_{L(G)}(u) * d_{L(G)}(e)\right]$. Hence, we have the following cases:

Case 1. $B \Pi_{+}(L(G))=B \Pi_{1}(L(G))=\mathrm{Q}_{u e}\left[d_{L(G)}(u)+d_{L(G)}(e)\right]$

$$
\begin{aligned}
& =\left[(2 r-2+4 r-6)^{2}\right]^{\frac{1}{2} n r(r-1)} \\
& =[2(3 r-4)]^{n r(r-1)} .
\end{aligned}
$$

Case 2. $B \Pi_{\times}(L(G))=B \Pi_{2}(L(G))=\mathrm{Q}_{u e}\left[d_{L(G)}(u) \times d_{L(G)}(e)\right]$

$$
\begin{aligned}
& =\left[[(2 r-2)(4 r-6)]^{2}\right]^{\frac{1}{2} n r(r-1)} \\
& =[4(r-1)(2 r-3)]^{n r(r-1)} .
\end{aligned}
$$

Thus the result follows.
By above Theorem, we have the following result without proof.

Theorem 2.2 Let G be a r-regular graph with $n \geq 2$ vertices. Then
$B \Pi_{2}(G)(L(G))=\left[\frac{2(r-1)(2 r-3)}{(3 r-4)}\right]^{n r(r-1)} B \Pi_{1}(G)(L(G))$.
Corollary 2.3 Let C_{n} be a cycle with $n \geq 3$ vertices. Then
$B \Pi_{1}\left(L\left(C_{n}\right)\right)=B \Pi_{2}\left(L\left(C_{n}\right)\right)=4^{2 n}$.
Corollary 2.4 Let K_{n} be a complete graph with $n \geq 3$ vertices. Then
(i) $B \Pi 1(L(K n))=(6 n-14) n(n-1)(n-2)$,
(ii) $B \Pi_{1}\left(L\left(K_{n}\right)\right)=[4(n-2)(2 n-5)]^{n(n-1)(n-2)}$.

Theorem 2.5 Let P_{n} be a path with $n \geq 4$ vertices. Then
(i) $B \Pi_{1}\left(L\left(P_{n}\right)\right)=9 \times 2^{4 n-14}$, (ii)
$B \Pi_{1}\left(L\left(P_{n}\right)\right)=2^{4 n-14}$.

Proof.

Let P_{n} be a path with $n \geq 4$ vertices. Since $L\left(P_{n}\right)^{\sim}=P_{n-1}$. By algebraic method, we have $\left|V\left(L\left(P_{n}\right)\right)\right|=n-1$ and $\left|E\left(L\left(P_{n}\right)\right)\right|=n-2$. We have two
partitions of the vertex set $V\left(L\left(P_{n}\right)\right)$ as follows: $V_{1}=\{v$
$\left.\in V\left(L\left(P_{n}\right)\right): d_{L(P n)}(v)=1\right\} ;\left|V_{1}\right|=2$, and
$V_{2}=\left\{v \in V\left(L\left(P_{n}\right)\right): d_{L(P n)}(v)=2\right\} ;\left|V_{2}\right|=n-3$.
Also we have two partitions of the edge set $E\left(L\left(P_{n}\right)\right)$ as follows:
$E_{1}=\left\{u v \in E\left(L\left(P_{n}\right)\right): d_{L(P n)}(u)=1, d_{L(P n)}(v)=2\right\} ;\left|E_{1}\right|=2$, and
$E_{2}=\left\{u v \in E\left(L\left(P_{n}\right)\right): d_{L(P n)}(u)=d_{L(P n)}(v)=2\right\} ;\left|E_{2}\right|=n-4$.
Then $B \Pi *(L(P n))=\mathrm{Q} u e[d L(P n)(u) * d L(P n)(e)]$

$$
=\underset{u v \in E_{1} \quad \mathrm{Y}[d L(P n)(u) * d L(P n)(e)]+\mathrm{Y}[d L(P n)(u) * d L(P n)(e)]}{u v \in E_{2}}
$$

We have the following two cases are arise:
Case 1. $B \Pi_{+}\left(L\left(P_{n}\right)\right)=B \Pi_{1}\left(L\left(P_{n}\right)\right)$

$$
\begin{aligned}
& =\quad{ }^{\mathrm{Y}}[(1+1) \times(2+1)] \times{ }^{\mathrm{Y}}[(2+2) \times(2+2)] \\
& =(2 \times 3)^{2} \times(4 \times 4)^{n-4}=9 \times \\
& 24 n-14 .
\end{aligned}
$$

Case 2. $B \Pi_{\times}\left(L\left(P_{n}\right)\right)=B \Pi_{2}\left(L\left(P_{n}\right)\right)$

$$
\begin{gathered}
=\quad{ }^{\mathrm{Y}}[(1 \times 1) \times(2 \times 1)] \times{ }^{\mathrm{Y}}[(2 \times 2) \times(2 \times 2)] \\
u v \in E_{1} \quad u v \in E_{2}
\end{gathered}
$$

$$
\begin{aligned}
= & (1 \times 2)^{2} \times(4 \times 4)^{n-4}= \\
& 24 n-14 .
\end{aligned}
$$

Thus the result follows.
By above Theorem, we have the following result without proof.
Theorem 2.6 Let P_{n} be a path with $n \geq 4$ vertices. Then

$$
B \Pi_{1}\left(L\left(P_{n}\right)\right)=9 B \Pi_{2}\left(L\left(P_{n}\right)\right) .
$$

Corollary 2.7 Let C_{n} be a cycle and P_{n} be a path with $n \geq 4$ vertices.
Then
(i) $B \Pi_{1}\left(L\left(P_{n}\right)\right)=9 \times 2^{-14} B \Pi_{1}\left(L\left(C_{n}\right)\right)$, (ii)
$B \Pi_{2}\left(L\left(P_{n}\right)\right)=2^{-14} B \Pi_{2}\left(L\left(C_{n}\right)\right)$.
Theorem 2.8 Let $K_{r, s}$ be a complete bipartite graph with $1 \leq r \leq s$ ver-
tices. Then
(i) $B \Pi 1(L(K r, s))=[3 r+3 s-8] r s(r+s-2)$,
(ii) $B \Pi_{2}\left(L\left(K_{r, s}\right)\right)=[(r+s-2)(2 r+2 s-6)]^{r s(r+s-2)}$.

Proof.

Let $K_{r, s}$ be a complete bipartite graph with $1 \leq r \leq s$ vertices. By algebraic method, we have $\left|V\left(L\left(K_{r, s}\right)\right)\right|=r s$, and $\mid E\left(L\left(K_{r, s}\right) \mid=\right.$. Since line graph of complete bipartite graph $K_{r, s}$ is a $(r+s-2)$-regular graph and $B \Pi_{*}\left(L\left(K_{r, s}\right)\right)=$
$\mathrm{Q} u e[d L(K r, s)(u) * d L(K r, s)(e)]$. We have
(i) $B \Pi_{+}\left(L\left(K_{r, s}\right)\right)=B \Pi_{1}\left(S\left(K_{r, s}\right)\right)$

$$
\begin{aligned}
& =\left[[(r+s-2)+(r+s-2+r+s-2-2)]^{2}\right]^{\frac{1}{2} r s(r+s-2)} \\
& =[3 r+3 s-8]^{r s(r+s-2)}
\end{aligned}
$$

(ii) $B \Pi_{\times}\left(L\left(K_{r, s}\right)\right)=B \Pi_{2}\left(L\left(K_{r, s}\right)\right)$

$$
\begin{aligned}
& =\left[[(r+s-2) \times(r+s-2+r+s-2-2)]^{2}\right]^{\frac{1}{2} r s(r+s-2)} \\
& =[(r+s-2)(2 r+2 s-6)]^{r s(r+s-2)}
\end{aligned}
$$

The following results are immediate from above theorem.
Corollary 2.9 Let $K_{1, s}$ be a star graph with $s \geq 1$ vertices. Then
(i) $B \Pi_{*}\left(L\left(K_{1, s}\right)\right)=B \Pi_{*}\left(K_{s}\right)$,
(ii) $B \Pi_{1}\left(L\left(K_{1, s}\right)\right)=(3 s-5)^{s(s-1)}$,
(iii) $B \Pi_{2}\left(L\left(K_{1, s}\right)\right)=[2(s-1)(s-2)]^{s(s-1)}$,

Corollary 2.10 Let $K_{r, r}$ be a regular complete bipartite graph with $r \geq 2$ vertices. Then
$B \Pi_{2}\left(L\left(K_{r, r}\right)\right)=\left[\frac{2(r-1)(2 r-3)}{3 r-4}\right]^{2 r^{2}(r-1)} B \Pi_{1}\left(L\left(K_{r, r}\right)\right)$.

References

M. Behzad and G. Chartrand, An Introduction to Total graphs, Coloring, Line graphs., Proc. Symp. Rome. (1966), 31-33.
I. Gutman, Multiplicative Zagreb indices of trees, Bull. Internat. Math. Virt. Inst. 1 (2011), 13-19.
I. Gutman and N. Trinajstic, Graph Theory and molecular orbitals, Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535-538.
I. Gutman, V. R. Kulli, B. Chaluvaraju and H. S. Boregowda, On Banhatti and Zagreb Indices. J. Int. Math. Virtual Inst. 7 (2017), 53-67.
R. L. Hemminger and L. W. Beineke, Line graphs and line digraphs, in L. W. Beineke and R. J. Wilson, Selected Topics in Graph Theory, Academic Press Inc., (1978), 271-305.
S. R. Jog, S. P. Hande, I. Gutman and S. Burcu Bozkurt, Derived graphs of some graphs, Kragujevac Journal of Mathematics, 36 (2), (2012), 309-
314.
V. R. Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
V. R. Kulli, On K Banhatti indices of graphs, Journal of Computer and Mathematical Sciences, 7(4), (2016), 213-218.
V. R. Kulli, On K indices of graphs, International Journal of Fuzzy Mathematical Archive, 10(2), (2016), 105-109.
V. R. Kulli, First Multiplicative K Banhatti index and coindex of graphs,

Annals of Pure and Applied Mathematics, 11 (2), (2016), 79-82.
V. R. Kulli, The Second multiplicative K Banhatti index and coindex of graphs, Journal of Computer and Mathematical Sciences, 7 (5), (2016), 254-258.
R. Todeschini, V. Consonni, New local vertex invariants and molecular descriptors based on functions of the vertex degrees, MATCH Commun.
Math. Comput. Chem. 64 (2010), 359-372.

